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ABSTRACT. In this paper, we present an index matrix interpretation of the On-
Line Analytal Processing (OLAP) cube. The aim is to present the basic OLAP
operations with similar operations from the index matrix theory. The operations
are discussed in terms of relational algebra and multidimensional models.

AMS CLASSIFICATION: 11C20.

KEYWORDS AND PHRASES. Index matrix, Aggregation, Data Warehouses, On-
Line Analytical Processing, OLAP operations.

1. INTRODUCTION

The Index Matrices (IM) were introduced in 1984 in [2] as an auxiliary tool for
the description of the logic and functioning of generalized nets. Apparatus of 3D-
Extended Index Matrices (3D-EIMs) was defined in a series of papers [3, 16, 17, 18]
and book [4].

For the needs of the research we will present the definition of the 3D-EIMs and
some operations over them in Section 2. In Section 3, will be presented definition
of the OLAP-cube and its properties will be discussed. In this section, will be
considered applications of the apparatus of the index matrices for presentation to
basic operations in OLAP-cube.

2. SHORT REMARKS ON 3D-EXTENDED INDEX MATRIX

Let us start with the definition of the 3D-extended index matrix from [4, 8],which
was extended in [16].

This work was supported by the Bulgarian National Science Fund under Grant Ref. No. DFNI-
1-02-5.
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2.1. Definition of 3D-Extended index matrix and some operations over
them.

2.1.1. Definition of 3D-Extended index matriz. The Intuitionistic Fuzzy Pair (IFP)
[5, 7] is an object in the form (a, b), where a,b € [0,1] and a+b < 1, which is used as
an evaluation of some object or process. Its components (a and b) are interpreted as
degrees of membership and non-membership, or degrees of validity and non-validity,
or degree of correctness and non-correctness, etc. Let I be a fixed set of indices,

1" = {{i1, g o in)| (V5 : 1 < 5 < n)(ij € 1)}

and I*= |y I™

1<n<oco

Let X be a fixed set of some objects. In the particular cases, they can be either real
numbers, or only the numbers 0 or 1, or logical variables, propositions or predicates,
IFPs, function etc.

A “3D-extended Index Matrix” (3D-EIM) with index sets K, L and H(K,L, H C

I*) and elements from set X is called the object:

N T P &

ki | Gkylihg 0 Gkiljhg o Gkl by
[K’LaHv{aki,lj,hg}]: : : : : | thH

ki | Gkityhg oo Qkilihg  -or Qhkilahg

Km | Qhpinshg o @hpilihg o Qg

where K = {ki, ko, ..., kn}, L= {l1,lo,...,ln},H = {hl./hz.,...,hf}, and for 1 <
i<m, 1<j<n, 1<g<f:agincX.

Following [4, 16], let 3D — EIMPp be the set of all 3D-EIMs with elements being
real numbers; 3D — ETMq;} be the set of all 3D-EIMs with elements being 0 or 1;
3D — EIMp be the set of all 3D-EIMs with elements — predicates; 3D — EIMpp
be the set of all 3D-EIMs with elements — IFPs and 3D — EIMpgp — the set of all

3D-EIMs with elements — one-argument functions € F !,

2.1.2. Projection. Let us have 3D-EIM A = [K, L, H,{ay,; n,}] and let M C K,
N C Land U C H. Then,

pTM,N,UA = [M7 N7 U7 {bki,lj,hg }]7

where for each k; € M, l; € N and hg € U, by, 1; h, = Qk; 1;,hy-

Js

2.1.3. Aggregation operations. Let the 3D-EIM A = [K, L, H, {ay, 1,1, }| (K, L, H C
I*) be given and let for 1 <i<m,1<j<n,1<g<f, {kio,ko} ¢ K,{ljo,lo} ¢
L,{hgyo,ho} ¢ H and Qi l5,hy € X. Leto: X xX —Xand x: X x X — X.
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Let
{“ + 77’ “ X ”7 “ave,"a"ge”7 “ma’x”’ “min”}’ if A € 3D o EII]\/[R
or Ae 3D — EIMpg;
o€ {“max”, “min’}, it A€3D — EIM,; .

{“N7, 4V 7}, it Ae3D - EIMp
or A€ 3D — EIMpp
In the case of 3D — EIMpp, in aggregation operations participate aggregating

pair operations (o, *) whose elements are applied respectively to the first and second
element of IFP, where

(0, %) € {(min, mazx), (min, average), (min, min), (average, average),
(average, min), (mazx, min)}.

Therefore, when A € 3D — EIMpp, operations “(o, *)” are defined for the intu-

itionistic fuzzy pairs (a,b) and (c, d), elements of A by
(a,b)(o,*)(c,d) = (o(a, ), x(b,d)).

In all other cases, we use only one operation (o).

The aggregation operations have the forms following [17]:
(o) — ax-aggregation

(K,0) (A, ko)
hy | I Io .. ln

=9 ko O Akylihy O Qhylyhy o ak,n, IPg€H
1<i<m 1<i<m 1<i<m

(o) — az-aggregation

hg lo
Ky O Qky ;b
1<j<n
o _
(L) (A lo) = 2 1<j<n @kaljhg | hg € H
km | 0 kb
1<j<n
(o) — ay-aggregation
I ho
k1 O Ayl hy
1<g<f
o) (A ho) = § F2 1<;)<f Uhalzhg | 1j € L
km, O Qkpylnihg
1<g<f
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(o) — a(x,1)-aggregation
Q(K,L,0) (Aa <k07 ZO>)

| h1 ho hy
@] [e) [e)
= (koslo) | | 7o @kidiht | o < Qhiloho V<< Mhidihy
1<j<n 1<j<n 1<j<n

(o) — a(x,m)-aggregation
(i, i,0) (A, (ko, ko))

| I Iy ln
(@] (@] (@]
(Rosho) | | 72 @kidihg | ;< @hidah Lt Thidnhg
12g<f 12g<f 12g<f

(o) — a(r,m)-aggregation
o, H,0) (A, (lo, ho))
\ ki ks . ko
Ak lj,hg

)
= (lo, ho) Whyljhg L << nBmilihg -
1<y

Q<. Q0
IANIN

n
f

INIA
IANIN

1<yj n
1< f

2.1.4. Generalized aggregation operations over 3D-FEIMs. Let us remind the gener-

alized aggregation operations from [15] as follows:
Let 3D-EIM A be given, that

[K L H, {akzds]b)hgc}]

HgEH Ly l]'71 ljﬂ] L,
K OK\ L, Hy, ©  OK.H, - QK0 5, Hy -+ QKy,Ln,Hy
_ kzg’l aki,l,Ll,Hg P aki’l,[jthg e aki,hlj‘,J,Hg e akz‘,l,LmHg
ki’] a,kl.,h.[/hHg . a'ki,lyl'j,lyHg e aki,]yl;1J7Hg N a'kq‘,,LLmHg
I(:m a’Km,'I/l.,Hg U,Km,l.jthg aKm’l.j,J,Hg a'Kmy.Ln,Hg

where K = {K17K2,...,Ki,...,Km}7Ki = {k’i,laki,27"')ki,l} for 1 < ) < m,
L= {Ll,LQ,...,Lj,...,Ln},Lj = {lj’l,l‘j’Q,...,l]’”]} for 1 S] §n,
H:{Hl,HQ,...,Hg,...,Hf}7Hg:{]’L971,hgl’27...,hg’g} fOI‘ngSf
and ({K,L,H} CcI*),andfor 1 <i<m, 1<j<n, 1<g<f, 1<d<lI,
1<b<J 1<c<G:ay hg(EX

zdv]b:

The generalized aggregation operations over the given matrix A have the forms:
(o) — a(x,k;)-aggregation — it is aggregation of index K; of dimension K

(K, K;0) (A, Kip)
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Hg €eH Ly c L]' e L,
K, aKy,L1,Hg e ARy, Ly, Hy . ARy, Ln,H,
Ko °  Ak,LiHy --- °  @k,L;Hy --- ° A, L,.H,
i,1<i<i,] i,1<i<i,] i,1<i<i,]
Km aKn17L17Hg aKmJJj,Hg aKmJJmHg

where K; C K and 1 <i<m

Let index set K, C K be given and K, = {Ky,,...,Ky,,..., Ky, },1 < v, <m
for 1 <o <t; Vi={Ky,0 - Koy 0, s Kp, 0} Koo ¢ K for 1 <z <t
Let us recall the following definitions: (o) — (K, K.)-aggregation

a(}ﬂK*,o) (A? V;‘) = a(K7K*,O)(A? <Kv1,07 ceey Kv,«r,,oa ceey Kv,,,[)))

= O‘(K,KVNO)((' . 'O‘(K,K"l,o)(Aa KUl,o) . .), er,,o)'
Analogically are constructed the definitions of the operations:

{(e) —aw,ry} {(o) = a(m,u,) }-ageregation and their summaries.
Let us present the definitions for other aggregating operations from [15]:
(O) — a(<K7K1./>,<L’Lj>)-aggregation

QKK (L, L) 0) (As (Ko, Ljo))

HQEH Ly Lj,() L,
K AKy,L1,Hy . °  AKl,H, - Ay, L, Hg
JA<i<h,d
O
Kip © Gk, L H, e kil Hg e © Gk LyH,
1,1<i<i,I j = ‘7.—<L/3 J ,1<i<4,I
Ko KLy, Hy - AF,n,Lj,Hy e Ky, L, Hg

where K; C K and L; C L.

Let index sets K, C K be given and K, = {Ky,, ..., Ky,y.. ., Ky, }, 1 < vy <m
for1 <2 <tand L, C L and L, = {Luy,...,Lu,,..., Ly}, 1 < uy < n for
1 <y <s. Let be given V, = {Ky, 0,..., Kup,0,.-, K0}, Ko, 0 ¢ K for 1 <a <t

Wi ={Luygs-+ s Luy g Lugo}s Luy0 ¢ Lfor 1 <y <s.
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Let us recall the definition of:
(0) — (K ,K.),(L,L.))-aggregation

QKK (Lo Ly Y,0) (A Vi, W)
= a((K,K*),<L,L*),o) (A, <Kﬂl’0, e 7sz,07 e ,Kvt10>, <Lu1,0, oo 7Luy,07 e ,Lu5,0>)

= QKK )LL) o) (- - O K )L Ly ,0) (A (Koo L 0)) - ) (K g5 L))
Analogically are constructed the definitions of following aggregation operations:
{(0) = aqr.xymm) } {(0) — a,L,),(m,m,)) }-aggregation and their summaries.

2.1.5. Hierarchical operators over EIMs. In [4, 6], three hierarchical operators are
defined by Atanassov over 2D-EIMs, when their elements are not only numbers,
variables, etc, but when they also can be whole (separate) IMs. Let us generalize
these three operators over 3D-EIMs. Let A = [K, L, H,{ak, ; n, } be an 3D-EIM and
let its element ag, ;, ». be an IM by itself:

a’k?m~,ly,hz = [P7 Q?O{bpmlIS,Oe}L

where
KNP=LNQ=HNO=4.
Here, we will extend the definition of the first hierarchical operator:
Al(ar, 1,.h.) = [(K = {ka}) U P (L = {l,}) UQ, (H — {hz}) UO, {Ct, 0,54 }];
where
Ahiljhg, if tu =ki € K —{kz}, v =1; € L —{ly} and sq = hy € H — {h,}

Clo w50 = bp, qs,00s Lty =pr € Pvy, =¢s € Q and 54 = 0. € O

0, otherwise
Let for i =1,2,...,m:
Qs it = P Qi O (b, a0 s
where for every 4,7 (1 <i < j <m):
PNP=Q:iNQ; =0;,n0; =0,
PNK=Q;,NL=0;NH=0.
Then, for ki z, ko2, ... kma € K, Ly, loy, ...;lmy € L and hiz, ho 2, ..., hun » € H:

1 2 m
A| (akl,mall,yvhl‘z’ ak2,myl2,y7h2,z L akm,zylm,y,hm,z)

= (-~-((A|(ailcl,z,zl,y,h1,z))|(Q%Z,Z,ZQ,y,hQ,Z))-~-)|(a?m,x,lm,y,hm,z))-
The second form of this operator for the above defined IM A and its fixed element
a‘kIA,ly,hz‘/ is
Al*(aky 1,,n.)
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hg €eH l1 - ly_l q1
k1 Akylihg oo Gkily 1hg  Qkylyhg
ka:—l a’kx,l,l],hg s a’szl,ly—l,hg akz—l,ly,hg
_ b1 a’km,ll,hg e akz’ly—l,hg bplﬂl,oe
Du a’km,ll,hg te a‘kmyly—l»hg bpuﬂl,oe
kiﬁ+1 akI+lyll7hg M akr+1)ly—1,hg a’k?:::+lalyahg
km Uyl hg o Okl 1hg  Qholyhg
Qv ly+1 e ln
Aky,ly,hg Akylyt1,hg v Ayl hyg
Aky_1lyhg  Qkz_1lyr1,hg -+ Ckp_1,ln,hyg
bpl 3qv,0e akz,ly+l¢hg e a’kzilnyhg
bpuguoe  Qkplyirhg oo Qkplohg
ki 1,ly,hg Qkgy1,lyti,hg Al 1,ln,hg
ak‘m:ly:hg akm,ly+1:hg M a‘kmalnvhg

Let us present the third hierarchical operator for the above IM A
= [K, L, H, {a’ki;lj;hg}]? where K = {k‘l, k'2, ey k‘m}, L= {l1, l2, cen ,ln}, H =
{hi,h2,...,h}andfor 1<i<m,1<j<nand1<g< [ ak i, €X.

Let each element Ay 1y be an IM by itself:
ki 5 hg = [Phi s hgs @kl hgs Whily hgs {0ki 15 hg pugows ], Where
1<i<m1<j<nl1<g< fil<u<Ujgl<v<Vil<m<Ilj, and
Pri 1y hg = APkidjhg,1s -+ s Phill hg Uisa bs @hilihg = 1Qkij hg, 1o+ s Wil hg Vg b
Wi tjhg = {Wki 1 hg 15 -+« Whi 1 hg 114 5.4 bs BKOPk, 150y = LOQu, 15,0, = HOWi 1 p, =
(0 and for every six indices {k;, k,} € K, {l;,l,} € L and {hgy,h.} € H : Py 1;hy %
Qkitjhg NV Pryity by X Qkyly he = (0, i.e., there is no pair of indices that is found in two
different IMs in the given EIM A, where “x” is the standard Cartesian product. In
this case, if there are two or more p—indices in A|* that coincide, all members of the
first dimension with these indices are written on the respective places in the first
dimension with coinciding indices. In this case, if there are two or more ¢g—indices
in A|* that coincide, all members of the second dimension with these indices are
written on the respective places in the second column with coinciding indices. In
this case, if there are two or more w—indices in A|* that coincide, all members of
the third dimension with these indices are written on the respective places in the
third column with coinciding indices.

259
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Al*
hg € H hy 1y hg 1 kil hg Vi g
Pky,ly kg1 aklvllvhg:111ywki,lj.,hg.1r s aklyll1h‘gvlyvl,1‘ngkl-,lj,hg,‘r.-
Pkyl1,hg,Ur,1,9 akl7l17h97U1,1,g71»wki,l]~,hg,fr s a’kl7l1vhg:Ul,l,gyvl,l,ngki,lj,hg,fr
Pk ln,hg,1 a/k'm:llahg)Ll:wki,lj‘,hg,ﬂ' s akm,h7hga1aV1,1,g;wki,lj,hg,1r
Pk lnhg,Um,n,g akm,ln,hg,Ul,l,g,l,wki,lj.,hg,w s akm»lnahgyUl,l,gaVLl,gawki,lj,hg,vr
qkmalnahgal e q"?malmhgavm n,g
akl,lnahg’lalawki,lj,h,g‘w s a‘kl7ln7hg717Vm,n,g7wki,lj,h,g,n
a’kl7ln7hg,U1,1,g711wki,lj,hgnr e a’kl1ln7hgaU1.n,g7Vm,n,g7wki,lj,hg:rr
b
akm’ln,hgyl»lywki,lj.hg,7( e a'km’lnyhgalaUm,n,ngkj,lj,hg,‘n
akm7lTLyhngm,n¢gul7wki,lj,hg“rr M ak’nl1lTL7h‘91Um,TL,g7Vm,TL,g7wk‘,i,lj,hg,‘IT

where Wy l5,hgw € Wki,lj,h g The matrix is padding ashing with zeros if an index
set by one dimension of the submatrix is shorter / longer than that of another

submatrix.

2.2. Definition of 3D-Multilayer extended index matrix and some opera-
tions over them [15].

2.2.1. Definition of 3D-multilayer extended index matrix (3D-MLEIM). Let us begin
this part with a definition of a 3D-multilayer extended index matrix A (3D-MLEIM)
with P levels (layers) of use of a dimension K, @ levels(layers) of use of a dimension
L and R levels(layers) of use of a dimension H as follows:

A=K, L HAaww @ g}

" e H L\ . LY . A
(P)
Ky Upe(P) (@) g oo Q) (@) ) - Gpe(P) [Q) ()
- Kl(P) A, (P) 1(Q) pp(R)  +++ A (P) 1(Q) gp(R) +++ A (P) 1(Q) p(R)
Ki 7Ll ’Hg Ki 7L] ’Hg Ki 7Ln 7Hg
KX |apw @ gm AL (P) 1 (Q) p(R) A, (P) 1 (Q) p(R)
m Lo AN Y (RN N () N (SN AN

where
K={k" k" KD KPP}y
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K =K KKKV er 1 <i<m

i RN |

0 0 0
KD = {KO K. KD

i.e. p-th layer of dimension K of the multilayer matrix, where (1 < p < P), is
presented by

K = {K@ D KED,  KP DY for1<p< P

L =LV L% L9 L for1<j<n

i.e. g-th layer of dimension @ of the multilayer matrix is presented by

LW = {ngfll),ng;l), . 7L§gjvi>} for 1 < q<Q

’

R R R
H={m" g . 5® . =

D = (mY 1S Y B 1< g < f

0 0 0
aY = a1 H
i.e. r-th layer of dimension H of the multilayer matrix is presented by

H&) = {H’L(Ui,_ll)7H'L(U,’;,_21)’ . HI(U’;_JV)} forl<r<R
and (K, L,H C I*),and for 1 <i<I, 1<j<J 1<g<G 1<p<P

1<q¢<Q, 1<r<R 1<d<I,1<b<J, 1<ce<G a0 ;@ € X,
Kid ’Lj.b Hy.c

K% ¢ Kk, L\9 ¢ Land HY) ¢ H.

2.2.2. Generalized aggregation operations over 3D-multilayer extended indexr ma-
triz (3D-MLEIM). The definition of the generalized aggregation operation, which
presents aggregation on the p-th layer of dimension K of the matrix A, which is
3D-MLEIM, is [15]:

(o) — e (P, _layer)-aggregation

(p)
Y kKk® p -layer ,o)(A" K;)
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( "M eH A
(P)
K, CLK§P)’L§Q)’H§R)
KFP

7

P () o
{K;, player }KGg| | C Apee) (@) pP)

K e kK
(P)
K, Qe P) [ (@) p()
¥ LY
A (P) (@ (R A (P) Q) (R
1 Ea} »rg 1 yin ,11g
O P o
1<p<p-1 UK L P 1<p<p-1 UK L gl
K» e k@ J K e k@
a R e a..(p R
Km(P),L;Q),Hé ) Kfn),L%Q),Hg )
P
whereK( )CK 1<p<P
P
Let index set K, C K be given and K, —{Kv ,...,qum),.. Kvt)}
(p) (p) (p)
V. = (KW, KD KW}y ¢ Kfor 1<p<P.

In this case let us recall the definition of the aggregation operation:
(o) — YK K p _layer)-aggregation

_ () (p) (»)
YK, K.p -layer,o)(A7 Vi) = K K., p- layer,o)(A7 <Kv11),07 X va 0" Kvi )

a(K,KﬁtP),o)(('"a(K,Kff),O)(A Kq(;f)o) ), g)o) Let index set K, C K be given
and K, = (K, K,k ve= (&P, kP LK) ¢ K and

P, ={p1,...,Pzxy---,pt}, where 1 < p, < P for 1 < z < t. We denote the power

set (the number of elements of the set G) of G by |G| = u. Let |K,| = |Py| = |Vi| = t.

In this case we will recall the definition of aggregation operation as follows:
() — a(x k. p.)-aggregation
QUK K. P.0) (A Vi) = ar k. P.0) (A <K(m) . Kﬁf"o), K(pt)»

v1,07 v¢,0
(A4, KLY, Kif’f ).

Yk kS o) ((- KK},P)

Similar are the deﬁnltlons of following operations: (o) — o, L§Q),q -layer)’

(o) — A _1ayer)—aggregation and their generalizations.
g oy
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Let us remind the definitions for other aggregating operations from [15]:
Y kD p -layer ),(L,L;.Q),q -layer ),0)? Y&,k p -layer ),(#,H® r -layer ),0)

and « -aggregation.

(LLSP q -layer ) (1,1 r -layer ),0)

The definition of {(o) — a -aggregation} is:

K.k p -layer )(L,Ll? g -layer ).o)

() 7(@)\y _
a(<KaKi(P)7p —layer )7<L7L§'Q)7q _la‘yer >7O) (A7 <K7;’0 ’Lj’0>) -
(@) (a)
Ll e Lj,O
(P) °©
K, CLK§P),L(1Q)’H£(]R) 1<o<g—1 GK§P>7L§_a>7H§R>
Ly e Ll
o
(p) ° 1<p<P—1
Kio | 1<pzp-1 9 L@ K € KD R P L HR
Kf e K® 1<0<0-1 ’
i o (q)
L7 € Ly
(P) °©
a a
m K LD (o e 1<o<o-1 P L) giP
Ly e L$?
\
L%Q) )

AR (@ g(®

o |H® e H 3,
a
1<p<p-1 kP L B
Kf e KT

R L@ 1P

WhereKi(P)CKforlgpSP,Lg-Q)CLforlSqSQ.
Similar are the definitions of (o) — Ak, kP p layer )P 5 layer ))’

(o) — (1,14 -layer JLL g -layer )) and their generalizations.

2.2.3. Hierarchical operators over 3D-MLEIMs. In subsection 2.1.5, three hierar-
chical operators are extended over 3D-EIMs. Let us generalize these three op-
erators over 3D-MLEIMs. 3D-MLEIM A can be represented as 3D-EIM with
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incorporated submatrices of multiple layers (levels). Its element A (P) [ (@) f(R)
i oty g
= [K; KP) L(Q) Hg {aK<p) L) 1, i.e., is an IM by itself.
P

Then, aKffL),LE-;Qb),Héf? [Kz(w),Lgcg)’Héc , {aK(p 1 L(Qy D R 1} is also an index
matrix and its elements are also index matrices, where KZ-(P) NnK Z(iz H_ Lg.Q) N
L(Q - = H, (R) Hs(7 = (). The first hierarchical operator over 3D-MLEIM A,
deﬁned above, has the following form:

Allaye) @ o) = [(K ~ (KN oY kY Ky (L (L)

1L,WINA

A L 53,0 (A DG LY o HEE DY et s,

Jib1 Jib2 Jbim g,c1 g,c2 g.cae
where ¢t .54
C(P) @) () if t, = K’ € K —{K[},
v = LQ e L (LS} and sq = HYY € H — (B}
P 1 P-1
= ] OB if t, = €{Kiu, L K
Q (@-1 Q 1
w = L( € {L )7 ] ben )}
R R—
and O = gg,cz 6 {H_(g C1 1)5 "'7H!§,CG611)}
0, otherwise

The second and third operators may be applied over 3D-MLEIM
A=|K,L H, {(LK(P) L@ H(R)}] analogically.
RS REEEY']
We can extend the ;econd hierarchical operator over 3D-MLEIM A as follows:

* .
A KaK,si),L;i),Héﬁ) 3 (pa q, T))

. A¥ *
=A |(A KaK,fi),Lg.i),Héi))m)’

where 1 <p< P, 1<¢q<@Q,1<r<R. The operator will be applied consistently to
levels P,P—1,...,p of dimension K, Q,Q —1,...,q of dimension Q and R, R—1,...,r
of dimension R.

The third operator may be extended also as follows: A*|(p,q,7) = A*|(...A*|...),
where 1 <p < P 1<¢q<@Q,1<r < R. This operator will be applied consistently
to levels P, P—1, ..., p of dimension K, Q,Q—1, ..., ¢ of dimension Q and R, R—1,...,r
of dimension R. The operator A*|(0,0,0) will unroll the matrix A in all dimensions.

3. OLAP-CUBE

OLAP (On-Line Analytical Processing) technology, a term coined by Codd [9]
(1993), provides interactive query-driven analysis of accumulated and consolidated
business data for the purpose of decision making and knowledge extraction. On-line
Analytical Processing Server (OLAP) is based on the multidimensional data model.
It allows managers, and analysts to get an insight of the information through fast,
consistent, and interactive access to information. These kinds of analyses can detect
trends and anomalies, make projections, and make business decisions [10]. In OLAP,
information is viewed conceptually as cubes that consist of descriptive categories
(dimensions) and quantitative values (measures) [1, 11, 19, 12]. In the scientific
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literature, measures are at times called variables, metrics, properties, attributes, or
indicators. Most business and scientific dimensions have a hierarchical structure.
Different attributes along each dimension are often organized in hierarchical struc-
tures that determine the different levels in which data can be further analyzed [12].
A concept hierarchy of OLAP is an order relation between a set of attributes of
a concept or dimension. It can be manually (users or experts) or automatically
generated (statistical analysis).

For example, within the dimension “Bookshop”, one may have levels composed
of BookshopName, Regional Manager and Owner (the following Fig. 1 illustrates
this hierarchy)

BookshopName

Regional Manager

Owner

Fic. 1. View of the dimension “Bookshop” hierarchy

OLAP operators take a data cube as an input and output a new cube. These oper-
ations are defined at logical level and have to be implemented in a visual framework
in the form of navigation or other interaction options [13].

3.1. OLAP solutions. Steps of OLAP-solutions at a high level include the follow-
ing [14]:

Understanding the current and ideal data flow;
Defining cubes;

Defining dimensions, members, and links;
Defining dimension levels and/or hierarchies;
Defining aggregations and other formulas.

For example, let us create an OLAP-cube as follows:

265
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R i Town Hy
Dimension 3 Town Hs
Town Hy
Bookshop Ka
Dimension 1

Bookshop Ki

Bookshop Ki
s = - 5
= a =
i I 3 g

Dimension 2

Fic. 2. Example OLAP-cube with 3 dimensions

e The cube performs sales volume as a function of books, bookshops and lo-
cations.

e Dimensions hierarchical concepts are: “Books”, “Bookshops” and “Loca-
tions”. The structure of the Bookshop-cube is presented on the Fig.3. The
hierarchy of the dimension “Location” is Town-Country, the hierarchy of the
dimension “Bookshops” is Bookshop Name-Regional Manager-Owner and
the hierarchy of the dimension “Books” is Title- Publisher-Genre:

EE Lecstion 2 Sales

w3 I wo Book_id
Town ‘_\_mEook;m_ﬂ
Country w0 Locstion_id 1@m

Fia. 3. Hierarchy in the dimensions

3.2. Some basic operations over OLAP-cube via 3D-EIMs. In terms of 3D-
EIMs the above example of OLAP-cube, presented in subsection 3.1 becomes the
following: let us create matrix A (3D-MLEIM with P-levels (layers) of use of a di-
mension K, @Q-levels (layers) of use of a dimension L and R-levels (layers) of use of
a dimension H, as follows:
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A= (KL H g 0 o)

(R) Q) Q) (Q)
HyY e H L - L . Ly,
P
K§ ) aK(P) L@ g®B aK(P) L@ g®B aK(P) L@ gR)
1 by 1 by g 1 hn Ty Hg
- K-(P) a. . (p R a. . (p R a..(p R
i Kz( )7L§Q),H§ ) e K} ),Lg—Q),Hé ) e Kf ),LSLQ),Hé )
K(P) A, (P) 1(Q) 1(R) A, (P) 1(Q) r7(R) A ,-(P) 1 (Q) p(R)
m Ky ', L177 Hg T TKm L Hg T TKm\Lp¥ Hy )

where
K={k" k" KD _ KP}Y
presents the dimension “Bookshops”;
KZ.(’I;) ﬂKi(,I;) =0, for1 <43 <mand 1 <iy <m.
The level categories are BookshopName/Regional Manager/Owner.

{ Bookshopname }K( ) = {K(I;_l).Ki(I;_l) ..... K(P b .,Ki(f_l)} for1<i<m

i, ’ A ’ [t 0
presents lower levels of the hierarchy in this dimension.
0 0

R = (KO KO )

i.e. p-th layer of dimension K of the multilayer matrix, where (1 < p < P), is
performed by

K = {ng),K,g{j), N .,Kf}j;}?} for L<p<P
L={L?, 0, .. L\¥ .. L@}

presents the dimension “Books”. The level category are Title/Publisher/Genre/
Unit_price;

L(Q)OL(2 —(Z) forl1<j1<nandl1<j2<n.

1 1 1 .
{Book}L(Q) {L §Q2 ),...,Lg ),..., ;% )}forlgjgn.
presents lower levels of the hlerarchy in this dimension.
1) _ 70 70 (0)
LI = {LU’I,LU’Q, y .,zvyv}

i.e. g-th layer of dimension @ of the multilayer matrix is performed by

L = {L(q D, LEb, . L 1)} for1<¢<@

R R R
H={m" g . 5® 5

presents the dimension “Location”. The level category are Country/Town
and ng ﬂHég) =0, for1<g,1<fand1<g,2<f.

{ Location }HéR) = {Héﬁfl),Hégfl), . .,Hg(fzfl), . ,Hg(’RGfl)} forl<g<f
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presents lower levels of the hierarchy in this dimension.

0 0 0
L HY ={E B0, )

i.e. r-th layer of dimension H of the multilayer matrix is performed by

HY) — {Hg D H o HE 1>} for1<r<R
and ({K,L,H} Cc I*),and for 1 <i<I, 1<j<J 1<g<G, 1<p<P 1<
g<Q,1<r<R, 1<d<I,1<b<J, 1§c§G:aK§5>’L§?§’H§QEX,KZ,(f(’))¢K,

L) ¢ L and H') ¢ H.

3.2.1. Operation “Roll-up”. A)Definition

Operation “Roll-up” performs aggregation on a data cube by climbing up the
concept hierarchy or by reduction of the dimension. These techniques can be mixed
[14].
The “Roll-up” (Fig. 4) operation performs selection of two or more dimensions on
an OLAP cube, using a criterion, and returns a new subcube. It groups cells in the

Cube based on an aggregation hierarchy.

Tovan Dimension 3
Dimension 3 e ria s
e T
Boskile & T
C::> B : Genre &
Dimension 1 2
Booktids 2 =
Genez 1
Bogkuls ! e — -
- o o, > s g 5
i 2 g &
Dimension 3

Dimension 2
Fic. 4. Operation “Roll-up”

B)Presentation of the operation “Roll-up” by the index matrices In terms of
theory of 3D-EIMs this operation for the example of Fig. 4 can be performed as
follows: Let a matrix A (3D-MLEIM) be given, as defined in subsection 3.2.

The presentation of the operation “Roll-up” in terms of index matrices is realized
by aggregating operators, which definition is given in section 2 of the article:
{(0)—c YK, K.p -layer)’ j(0)—a Q(L,L.q -layer)’ (O)_O‘(H,H*,r —layer)5( )—ar k.,p.); ()=

(... and (o) — (g u. r.)}-aggregations.

Summarized the operation “Roll-up” can be represented, as follows:

YK K., p—layer,o)(A’ Ws) Sv,n) AL, L., q—layer,o)(A7 Us)

Dv.NYw 5., r-layer, o)(A V)
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whereK CKand K, = {K&, .. kP, . kY

= {EP,,... Kffjm.. K(p)0}§§Kfor1<p<P
L.CLand L, ={L@, ... L&?),.. L,

_{Lulo,...,ng}, L(q o ELforl<q<Q;

H, cHandH*z{Héf,... ,Sf),...,H,Ef)},

={H...,B H) V¢ Hfor 1 <r <R

or (K, ,P.0) (A Wi) D(v,n) ULL..Qu0) (A Us) ©(vn) (i, H. R 0) (A5 Vi)
where K, C K and K, = (K, ..., K KG) Y, W = (K. KW
Uﬁ‘;vg)}¢KandP —{pl,...,pz,...,pw} wherepxe{l LPHforl <z <W;
L,CLand L, = {2, L& . LY}y v. = (L"), .. L), L")y ¢ L
andQ*:{ql,...,qy,...,qQ},Whereqye{l .,Q}for1<y<U
H,CHand H, = {H . B  #HP) vo=(a]y,. =5,

H(T ot ¢ Hand Ry ={ri,...,72...,rv}, wherer, € {1..., P} for 1 <2<V}

C)Examples for operation “Roll-up”:

e MDX queryl: The first MDX query presents a standard case of “roll-up”
operation. It aggregated the highest levels from the dimensions “Books”,
“Bookshops” and “Location”.

MDX queryl:

SELECT NON EMPTY ({[Location].[Hierarchy]},{[Books|.[Hierarchy]}) ON
COLUMNS, [Bookshops]|.[Hierarchy] ON ROWS

FROM [Bookshops] WHERE [Measures].[Sales Count];

Result: The query presents the number of all sold books in the cube “Book-
shops” (Fig. 5). The operation is performed using three dimensions -
“Books”, “Bookshops” and “Location”.

Fic. 5. Result of “roll-up” operation aggregating the highest levels
from be “Bookshops” cube

e MDX query2: The next query can be used to present the meaning of the
operation “roll-up” again. It returns all members of level “Country” from
the hierarchy of the dimension Location according the members in highest
levels by the dimensions “Bookshops” and “Books” (Fig.6 and Fig.7).
MDX query2:

SELECT DrillUpLevel([Books].[Hierarchy]) ON COLUMNS,
NON EMPTY ({[Location].[Hierarchy].[Country]}) ON ROWS
FROM [Bookshops] WHERE [Measures|.[Sales Count];



270

V. Traneva, V. Bureva, E. Sotirova and K. Atanassov

Result:

Poland_| 5

B 4

S Y

F1G. 6. All sold books in all countries - the dimensions “Locations”
and “Books” are used

SELECT crossjoin({[Books|.[Hierarchy]}, {[Bookshops|.[Hierarchy]}) ON
COLUMNS,
NON EMPTY ({[Location].[Hierarchy].[Country]}) ON ROWS
FROM [Bookshops|
WHERE [Measures].[Sales Count];

F1c. 7. All sold books in all countries - the dimensions “Locations”,
“Books” and “Bookshops” are used

MDX query3: This query presents the same example with a small difference.
The sold books are distributed by the members of the level “Genre” for the
dimension “Books”. The aim of this illustration is to presents the sold books
in countries by genre. We will note that our Bookshop cube is made only
for these examples. This is the purpose of the presence of the values “null”
which we know from the theory of the relational databases. When the cube is
used for some real application and it has many null values, this presentation
can lead to sparse cube or database explosion. It is not recommended.
MDX query3:

SELECT NON EMPTY ([Books|.[Hierarchy].children)

ON COLUMNS,

NON EMPTY {[Location].[Hierarchy].children} ONROWS

FROM [Bookshops] WHERE [Measures|.[Sales Count];

Result:The MDX query extracts the members from the levels “Country” and
“Genre” of the dimensions “Locations” and “Books” and aggregates the sum
of sold books in each country from each genre.
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|| Children Books || Computer Book || Computer Books || Cooking Books |

. rally {rully 1 2
{rully 1 1 2

1 1 3 il

1 {nully 3 inull}

Fic. 8. Application of “roll-up” operation over dimensions “Loca-
tion” and “Books”

e MDX query4: The following MDX query extends by adding the third di-
mension “Bookshops”.
MDX query4:
SELECT NON EMPTY ([Books|.[Hierarchy].children) ON COLUMNS,
NON EMPTY crossjoin({[Location].[Hierarchy].children},
{[Bookshops]|.[Hierarchy].children}) ON ROWS
FROM [Bookshops|
WHERE [Measures].[Sales Count];
Result:The result of the query presents the sold books by genre, country and
owner of the bookshops (Fig.9) .We will note again that the cube “Book-
shops” is only for the examples and it has a null values.

{rull
_\VamiRodev | ) il 3 il

F1G. 9. Sold books by genre, country and owner of the bookshops

e MDX query5: The last MDX query aggregates all sold books by genre “Com-
puter Books”. The aggregation is by dimension “Books”. There are 18 sold
computer books in all countries from all owners of bookshops.

MDX queryb:
SELECT DrillUpLevel ({[Books|.[Hierarchy].[All Books],

[Books|.[Hierarchy].[Genre].&[Computer Books|},

[Books|.[Hierarchy].[Genre] ) ON COLUMNS
FROM [Bookshops|
WHERE [Measures].[Sales Count];
Result: The MDX query extracts the members from the levels “Country” and
“Genre” of the dimensions “Location” and “Books” and aggregates the sum
of sold books in each country from each genre.
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Computer Books |
18

Fic. 10. The result from the query counting all the values in genre
“Computer Books” is shown on Fig.10. The operation is performed
using one dimensions - “Books”.

3.2.2. Operation “Drill-down”. A) Definition

Operation “Drill-down” is the reverse operation of “Roll-up”. It is performed in
either of the following ways [14]:

— Drill-down is performed by stepping down a concept hierarchy for some of the
dimensions in OLAP.

— When drill-down is performed, one or more levels of the dimensions from the data
cube are added.

— It navigates the data from less detailed data to highly detailed data.

The following Fig. 11 illustrates the drilled-down dimension “Books” from level
“Publisher” to level “Title”. The levels “Country” from dimension “Locations” and
“Regional Manager” from dimension “Bookshops” are presented also.

S S Topma
Dimension 3 Dimension 3 Im;i!ﬂ
Country n Towm
—  Cowmtry! / Bogkiile &
g Genre & [:C
5 Dimension 1
35 0 Book il 2
£ Genre 1 Bookiide 1

1
2
v

Owner

(Owner
Bookshop!
Booksh
Bonkshap3
Bookshopp

8

: . . : o
Dimension 2 Dimension 2

FiG. 11. Operation “Drill-down”

B)Presentation of the operation “Drill-down” by the index matrices

The operation “drill-down” over 3D-MLEIM can be expressed using hierarchical
operators. In this case an element of 3D-MLEIM A is a 3D-EIM. When the oper-
ation “roll-up” is performed, the cell of A shows the total calculated value of the
cells of sub-index matrix. The opposite operation “drill-down” returns the steps of
aggregation. The operation “drill-through” restores the original form of the cube
with the transactional data. In OLAP the steps of aggregation is frequently stored
in the “tree of queries” that contains the queries that are executed on the differ-
ent stages of the OLAP application. The operations “roll-up” and “drill-down” are

performed depending how we navigate. If we follow the path from a,.0) ;@ ) to
i,d g1

aKi(,’;),L;?,f,Hﬁ to aKf?,L;f’g HOY where 1 < p < P, the operation roll-up executes by
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the dimension K. If we follow the way back, the operation drill-down by the dimen-
sion K is implemented. Summary the OLAP cube can be represented as multilayer
index matrix, which contains itself several 3D-EIM (Fig. 12).

FiGg. 12. Multilayer index matrix

Let us present the hierarchical operators, extended in subsection 2.2.3:
3D-MLEIM A can be represented as a 3D-EIM with incorporated matrices of mul-
tiple 1 levels). Its el t

iple layers (levels). Its elemen CLKi(P)’L;Q)’HéR)
:[AjplzéQkfﬁRl{aKunL«D}ﬂm}]Le.isanltlbyimew

(P) Q)
Then Upe() 1@ pri) = [Kiw L L H ,{aKw D L@ i 1} is also an index

() (P _ 1@
J

TWe

K

matrix and its elements is also index matrices, Where K
(Q@-1) _ ()

L; b, =Hg;"' N HE g, cz = 0.
The first hierarchical operator over 3D-MLEIM A, has the following form, pre-

sented in the subsection 2.2.3:

Al(age L9 )

= (& — (K UK KD K (= (L)

7,W1 7,w2 ,WIQ
(@Q-1) r(Q-1) ,@-1 R (R—1) R-1 R-1
u{LJb1 Loy, e Lip U (H — {H( >})U{H H;Q ) ;CGC)}
{ tu sVw,Sd }l .

The second hierarchical operators may be applied over 3D-MLEIM
A=[K,L H/{a,wr L@ ;m }] and have the forms:
i ody Tefg

ANy @ o) = (K (KD ULKEY, K0 K DY (L= L5

7,W1 zwz 1,WI0
2,w 7

N p@n

s i DY, (H — {H{D}) U{HSED, BED, L HED),

g,c2 ’ g,cGc
{Ctuﬂ)wssd }lv
and A*I(aK§5>,L§§),H§f§); (p,q.7)),

where 1 < p < P11 < g < Q,1 < r < R. The last operator will be applied
consistently to levels P, P — 1,...,p of dimension K, Q,Q — 1, ...,q of dimension @
and R,R—1,...,r of dimension R.
These two operators (more precisely, the second modified hierarchical operator
if we won’t to lost information) can be applied when we navigate from the path
K(P) L(q) T to aK(p) L(q) e to aKm) L(q) HOD where 1 < p < P. The summarized

L(

U{L J:biB

cells are calculated as result of ‘roll-up” operatlon The third hierarchical operators
have the forms as follows: A* and A*|((p,q,r)) = A*|(...A*|...), where 1 < p <
P,1 <qg<@Q,1<r<R. The operator A*|(0,0,0) will drill-down the matrix A in
all dimensions.
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C) Examples for operation “Drill-down”:

e MDX queryl: The first example drills down on “OReilly” and “Microsoft
Press” members on the level “Publisher” to the level “Title” from dimension
“Bookshops”.

MDX queryl:
SELECT {[Measures].[Sales Count]} ON COLUMNS,
drilldownlevel ({[Books|.[Hierarchy|.[Publisher].&[O Reilly],

[Books].[Hierarchy|.[Publisher].&[Microsoft Press|},

[Books|.[Hierarchy].[Publisher]) ON ROWS
FROM [Bookshops];
Result: The result of the query drill downs the book titles from publishers
OReilly and Microsoft Press no matter in which country they were purchased
and who is the owner of the bookstore (Fig.13).

FiG. 13. The publishers “OReilly” and “Microsoft Press”are drilled
down to book titles

e MDX queryla: This example drills down on OReilly and Microsoft Press
members to the title level and returns the top 1 book based on the measure
Sales Count:

MDX queryla:
SELECT {[Measures].[Sales Count]} ON COLUMNS,
drilldownleveltop ({[Books].[Hierarchy].[Publisher].&[O Reilly],

[Books].[Hierarchy].[Publisher].&[Microsoft Press| }, 1,
[Books|.[Hierarchy].[Publisher],

[Measures].[Sales Count]) ON ROWS
FROM [Bookshops];
Result: “Hadoop: The Definitive Guide” is the book that is sold in most
units from the publisher OReilly and the book “Introducing Microsoft SQL
Server 2014” is the first sold book from publisher Microsoft Press (Fig.14).
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FiG. 14. The publishers “OReilly” and “Microsoft Press” are drilled
down to the book that is sold in most units

MDX querylb: This example drills down on “OReilly” and “Microsoft Press”
members to the title level and returns the bottom one book based on the
measure Sales Count:

MDX querylb:

SELECT [Measures].[Sales Count] ON COLUMNS,

drilldownlevelbottom ([Books|.[Hierarchy].[Publisher].&[O Reilly],

[Books].[Hierarchy].[Publisher].&[Microsoft Press], 1,
[Books].[Hierarchy].[Publisher], [Measures].[Sales Count]) ON ROWS
FROM [Bookshops];

Result: The MDX query extracts the bottom number of the sold books from
publishers OReilly and Microsoft Press (Fig.15).

ing Microsoft SGL Server 2012 |

FiG. 15. The publishers “OReilly” and “Microsoft Press” are drilled
down to the book that is sold in most units

MDX query2: More detailed presentation of the levels in drill-down opera-
tion are presented in the next MDX query (Fig.16). The member “Bulgaria”
from level “Country” is drilled down to level “Town” with members “Bur-
gas”, “Plovdiv” and “Sofia”.

MDX query?2:

WITH MEMBER [Measures].[Level] AS

[Location].[Hierarchy].currentmember.level.ordinal
SELECT {[Measures].[Sales Count],[Measures].[Level]} ON COLUMNS,
nonempty (drilldownmember({[Location].[Hierarchy].[Country|.[Bulgaria] },
{[Location].[Hierarchy].[Country].[Bulgaria],

[Location].[Hierarchy].[Town] } ,recursive),

[Measures].[Sales Count]) ON ROWS
FROM [Bookshops]
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Result: The MDX query drill downs the member from level “Countries” to
the members from level “Town” from dimension “Books”-(Fig.16).

[ Sales Court || Level |
13 1
5 2
5 2
3 2

Fic. 16. The result from the drill-down query

e MDX query3: The next query drill downs the dimension Books from level
“Publisher” to level “Title” by country and owner of the bookshops:
MDX query3:
SELECT NON EMPTY CROSSJOIN ({[Location].[Hierarchy].[Country]},
{[Bookshops]|.[Hierarchy].[Regional Manager|}) ON COLUMNS,
drilldownlevel ([Books].[Hierarchy].[Publisher].&[O Reilly],

[Books].[Hierarchy].[Publisher].&[Springer]|}, [Books|.[Hierarchy].[Publisher])
ON ROWS
FROM [Bookshops|
WHERE {[Measures].[Sales Count|}
Result:The result of the query presents the drilled down sold book titles
from publishers “OReilly” and “Microsoft Press” by country and owner of
the bookshops (Fig.17).

| | Bugsia = Bugads . Englng | Poland
ORelly L2 1 1 )
(C#500na Nushel The Defindive Reference . () fudl) i iy
Hadoop: The Defintive Gude | 1 ol oy fwal
(JavaScript: The Defintive Guide L ) | ) fudl
{JavaScnpt: The Good Pats ] 1 ) P ol
Spanger. | 1 fudly fuly 1
(rtroduction i Computer Design 1 o} ol 1

Fic. 17. The drilled down book titles from publishers “OReilly” and
“Microsoft Press” by country and owner

e MDX query4: The next query returns the data from the fact table no matter
what level of the hierarchy is ongoing:
MDX query4:
DRILLTHROUGH
SELECT ([Books].[HierarchyBooks].[Genre].&[Children Books]) ON COLUMNS
FROM [Bookshops2]
WHERE [Location].[HierarchyLocation].[Country].&[Bulgarial
RETURN [Sales].[$Location.Id], [Sales|.[$Bookshops.Id],

[Sales].[$Books.Id], [Sales].[Number]
Result: The result of the query presents the data from the fact table no
matter what level of the hierarchy is ongoing (Fig.18).



Index matrices and Olap-cube 277

[Sales}{$Location ld] [Sales}i$Bockshops.id] [Sales][$Bocks.ld] [Sales][Number}
19 4

20
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22
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20
21
22
18
20
21
2
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R o= 00 B = S s N

F1G. 18. The drilled through OLAP-cube

4. CONCLUSION

In the present paper we used the apparatus of the index matrices as a tool to
represent OLAP operations and the existing index matrix operations to present
OLAP-operation. In the future authors will present the rest OLAP-operations and
their implementation. In a next research we will discuss the presented applications
of index matrices in procedures for decision making with use of intercriteria analysis.

ACKNOWLEDGEMENTS

The authors are thankful for the support provided by the Bulgarian National
Science Fund under Grant Ref. No. DFNI-I-02-5/2014.

REFERENCES

[1] Agrawal R., Gupta A., and Sarawagi S. Modeling multidimensional databases In Proceedings
of the 13th International Conference on Data Engineering, Washington, DC, USA, IEEE Com-
puter Society, 1997, 232-243.

[2] Atanassov, K. Generalized index matrices, Comptes rendus de 1’Academie Bulgare des Sciences,
Vol. 40, 1987, No. 11, 15-18.

[3] Atanassov, K. On indez matrices. Part 5: Three dimensional index matrices, Advanced Studies
in Contemporary Mathematics, Vol. 24, 2014, No. 4, 423-432.

[4] Atanassov, K. Index Matrices: Towards an Augmented Matriz Calculus, Studies in Computa-
tional Intelligence 573, Springer, Cham, 2014.

[5] Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.

[6] Atanassov, K. Index matrices with elements index matrices, 2017, in press.

[7] Atanassov, K., E. Szmidt, J. Kacprzyk. On intuitionistic fuzzy pairs, Notes on Intuitionistic
Fuzzy Sets, Vol. 19, 2013, No. 3, 1-13.

[8] Atanassov K., E. Szmidt, J. Kasprzyk, V. Bureva. Two Ezamples for the Use of 3-dimensional
Intuitionistic Fuzzy Indexr Matrices, Notes of Intuitionistic Fuzzy Sets, Vol. 20, N 2, 2014,
52-59.

[9] Codd, E.F. et al., Providing OLAP (On-Line Analytical Processing) to User-Analysts: An
ITMandate (Technical report), E.F.Codd & Associates, 1993.

[10] Colliat G. OLAP, relational, and multidimensional database systems, In SIGMOD Rec., volume
25, New York, NY, USA, 1996, 64-69.

[11] Gyssens M. and Lakshmanan L. V. A foundation for multi-dimensional databases, 1997, 106-
115.



278

(12]

(13]

(14]
(15]
(16]

(17]

(18]

(19]

V. Traneva, V. Bureva, E. Sotirova and K. Atanassov

Sapia C. Promise: Predicting query behavior to enable predictive caching strategies for OLAP
systems, In Proceedings of the 2nd International Conference on Data Warehousing and Knowl-
edge Discovery, London, UK, 2000, Springer-Verlag, 224-233.

Mansmann, Svetlana, Marc Scholl Visual olap: A new paradigm for exploring multidimensional
aggregates, Proceedings of the TADIS International Conference on Computer Graphics and
Visualization,(CGV2008), IADIS,Amsterdam, July 2008, 59-66.

Thomsen, E. OLAP Solutions: Building Multidimensional Information Systems, Wiley Com-
puter Publishing, 2nd Edition, 2002.

Traneva, V. On 3-dimensional multilayer matrices and operations with them, 2017 (in press),
in Bulgarian.

Traneva, V., P. Rangasami, K. Atanassov. On 3-dimensional index matrices, International
Journal of Research in Science indexed in i-scholar, Vol.1, Issue 2, 64-68.

Traneva, V., E. Sotirova, V. Bureva, K. Atanassov. Aggregation operations over 3-dimensional
extended index matrices,Advanced Studies in Contemporary Mathematics, volume 25 (3), 2015,
407-416.

Traneva, V. Internal operations over 3-dimensional extended indexr matrices, Proceedings of
the Jangjeon Mathematical Society, volume 18 (4), 2015, 547-569.

Vassiliadis P. Modeling multidimensional databases, cubes and cube operations In Proceed-
ings of the 10th International Conference on Scientific and Statistical Database Management,
Washington, DC, USA,IEEE Computer Society, 1998, 53-62.





